FROM COMPUTATIONAL DESIGN TO MOLECULAR ELECTRONICS ON NANOPATTERNED SURFACES

LUIZA BUIMAGA-IARINCA, DANIEL MARCONI, ALIA COLNIȚĂ, CRISTIAN MORARI, IOAN TURCU

The 16th edition of the National Seminar of Nanoscience and Nanotechnology
Bucharest, Library of the Romanian Academy, June 6th 2017
Outline

✓ Starting the nano-device construction:
 ✓ construct the surface,
 ✓ construct the active layer,
 ✓ evaluate their properties

✓ Assessing the device electronic properties:
 ✓ DFT calculations

✓ Real case: hybrid organic – inorganic diode based on ZnO/FePc junction

SPM-MBE facility at NIRDIMT Cluj

http://grid.itim-cj.ro/
https://erris.gov.ro/INGRID---GRID-System-1
EXPERIMENT: HOW TO BUILD A MOLECULAR LAYER ON A SURFACE?

- surface preparation
- molecule deposition
- characterization via STM images
Examples: Fabrication of nanostructured, ultra-flat thin films as promising substrates for molecular electronics1,2

Sub-monolayer molecular deposition: FePc on Au(111) case study

2D-STM image for 200 nm thickness of FePc/Au(111)

2D-STM image for sub-monolayer FePc/Au(111)

2D-STM image of Au(111) surface with atomic defects

Roughness RMS=0.32 nm
THEORY: HOW TO DESIGN THE PROPERTIES OF MOLECULAR DEVICES

- periodic structure calculations (slab model)
- computational technique: DFT
 - charge transfer
 - density of states
 - molecule-substrate interaction geometry
Examples: molecules on surfaces

\(\sigma\)-bonded molecule (alpha glycerophosphocholine) in interaction with Au surface; positive and negative electric charge effect\(^1\).

Molecular self-assembly on metallic surface (cysteine on gold)\(^2\)

Calculation of unimolecular device properties (rutenium-di-terpyridine sandwiched between two gold electrodes)\(^3\)

\(^3\) C. Morari, L. Buimaga-Iarinca et al, Nature Scientific Reports 6, 31856 (2016)
Practical approach for FePc on Au(111) case study

Main idea: the molecular structure and parameters have to be stable in the adsorption state when structural deformation occurs on the surface (i.e. lab-made/cheap surfaces)

Computational details:
Molecule (FePc) – 57 atoms; Au(111) surface – 7x7x3 atoms; lattice parameter 4.08 Ang.
The molecule and first Au layer set free to relax their position
Relaxed until a gradient < 0.03 eV/Ang;
Spin-polarized calculations
We used the SIESTA code in VdW setup, with the BH* functionals.

Charge transfer between FePc and Au substrate

CONCLUSION

Charge transfer between molecule and surface differ for each case (left images)

BUT
is small - little or no difference for the Fe atom (right images)

So
It may be possible to build devices using ‘lab-made’ surfaces

Δρ=0.001 Å/B³
Δρ=0.01 Å/B³

Model 1

Model 2

Model 3

Red – FePC accept charge from the surface; Blue – FePC loose charge to the surface
EXPERIMENTAL IMPLEMENTATION: HYBRID ZnO/FePc NANO-DIODE

Transparent and flexible electronics
Organic-inorganic hybrid diode
In the near-future:

Thin-film MOLECULAR TRANSISTOR on transparent and flexible substrate
CONCLUSIONS

We construct the surface by MBE \rightarrow design and assess the device properties by DFT \rightarrow construct the molecular device components \rightarrow assemble the device \rightarrow perform complete measurements and characterizations.

From design to proof-of-concept: calculations, fabrication and characterization – we integrate all the steps to produce nanometric-scale organo-metallic flexible devices.
Financial support is gratefully acknowledged from UEFISCDI, CAPACITIES – Module I – Large investment projects for 2PM/I/07.10.2008, UEFISCDI, for PN-II-ID-PCCE-2011-2-0027, ANCSI, Core Programme for Project PN16-30 02 01.